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WIND-TUNNEL INVESTIGATION OF INTERNALLY BLOWN 

JET-FLAP STOL AIRPLANE MODEL 

Raymond D. Vogler 
Langley Research Center 

SUMMARY 

An investigation was made to determine the low-speed longitudinal aero- 
dynamic characteristics of a model of an internally blown jet-flap STOL air- 
plane. Jet momentum was obtained with compressed air. The supercritical 
swept wing had leading-edge slats and a full-span 0.30-chord plain flap 
divided into six equal spanwise segments. The flaps had 0.15-chord trailing- 
edge flaperons. Data were obtained through an angle-of-attack range for 
momentum coefficients from 0 to 2.3 and for flap deflections from 0' to 70'. 

The wing leading-edge slats delayed the wing stall to higher angles of 
attack and higher lift coefficients. The 0.25-chord slat was more effective 
than the 0.15-chord slat at the higher flap deflections. The 0.15-chord 
flaperons suffered flow separation at much lower deflections and produced 
lower maximum lift than did the 0.30-chord flaps. For a given momentum coef- 
ficient, higher lift coefficients are obtained by blowing over the entire 
wing than can be obtained by blowing over partial spans. 

INTRODUCTION 

Recent activity concerned with developing short takeoff and landing 
(STOL)  transport airplanes using propulsive lift has received considerable 
attention. In response to this interest, a comparison of several Configura- 
tions which use different propulsive methods to produce high lift was under- 
taken in the Langley V/STOL tunnel. Except for wing thickness, all the con- 
figurations studied had the same wing-body-tail combination for cruise. The 
propulsive-lift methods studied include externally blown flaps (ref. 1 1 ,  
upper surface blown flaps (ref. 2 ) ,  and deflected thrust with mechanical 
flaps (ref. 3). All these configurations use a 9.3-percent-thick super- 
critical airfoil f o r  the wing. An augmented flap and the internally blown 
jet flap used in this study were tested with the use of a 17-percent-thick 
supercritical airfoil for the wing. An initial comparison of the aerody- 
namic characteristics of these configurations at low speeds is presented in 
reference 4. 

The present investigation dealt with the internally blown jet-flap con- 
figuration. 
chord) with leading-edge slats and 0.30-chord blown flaps with 0.15-chord 
flaperons. The slat was configured to delay stall to high angles of attack 
at all conditions. The flap plus flaperon combination was designed to 
improve flow turning with powered lift and to provide some high lift without 

The model combined a swept wing (nominally 30' at the quarter 
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power. In addition, the wing had a 17-percent-thick supercritical airfoil 'I 
which provided sufficient volume for the internal ducts required on this. $ 4 
the full-scale airplane. -i 
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airplane concept. The model had no engine nacelles as would be required on 

The purpose of this investigation was to determine the low-speed lon- 
gitudinal characteristics of the internally blown jet-flap configuration. 
Data were obtained through an angle-of-attack range for several flap and 
flaperon deflections at low and at high levels of blowing as well as with no 
blowing. Effects of wing leading-edge slats and partial-span flap blowing 
were also determined. Some runs were made to determine the effect of 
horizontal-tail incidence and tail flap deflections. 

P 

SYMBOLS 

Force and moment data are presented about stability axes and include 
jet momentum effects. Measurements and calculations were made in U.S. 
Customary Units and are presented in International System of Units (SI) 
(ref. 5 ) .  
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exposed wing span, m 

flap span, m 

Drag 
drag coefficient, - 

q m s  

Lift 
lift coefficient, - 

9,' 

Pitching moment 
pitching-moment coefficient about 0.40c, 

qmsc -- 

momentum coefficient, 
q,s 

wing local chord, m 

wing mean aerodynamic chord, m 

balance measured static axial force with flaps removed, N 

balance measured static normal force with flaps removed, N 

tail incidence; positive when trailing edge is down, deg 

free-stream dynamic pressure, N/m 2 
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wing area, m2 



Q a n g l e  o f  a t t a c k  o f  wing o r  f u s e l a g e ,  deg 

f l a p  d e f l e c t i o n ,  measured w i t h  r e s p e c t  t o  wing; p o s i t i v e  when 
t r a i l i n g  edge i s  down, deg  

6 f l  

f l a p e r o n  d e f l e c t i o n ,  measured w i t h  r e s p e c t  t o  f l a p ;  p o s i t i v e  
when t r a i l i n g  edge is  down, deg 

6 f 2  

6 S  wing s l a t  d e f l e c t i o n ;  p o s i t i v e  when l e a d i n g  edge i s  down, deg 

t a i l  f l a p  d e f l e c t i o n ;  p o s i t i v e  when t r a i l i n g  edge i s  down, deg 

t a i l  s l a t  d e f l e c t i o n ;  p o s i t i v e  when l e a d i n g  edge i s  down, deg 

t f  
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MODEL AND APPARATUS 

A three-view drawing of t h e  model is  shown i n  f i g u r e  1 ,  and f l a p  and 
s l a t  d e t a i l s  are  shown i n  f i g u r e  2. The wing o r d i n a t e s  are  g i v e n  i n  f ig -  
u r e  3,  and photographs o f  t h e  model are g i v e n  i n  f i g u r e  4. The wing was 
a 17-percent- thick s u p e r c r i t i c a l  a i r f o i l ,  and t h e  t a i l  s u r f a c e s  were 
11-percent- thick symmet r i ca l  s u p e r c r i t i c a l  a i r f o i l s .  The f u l l - s p a n  
0.30-chord p l a i n  f l a p s  were equipped wi th  0.15-chord t r a i l i n g - e d g e  f l a p -  
e r o n s  which could be d e f l e c t e d  p o s i t i v e l y  and n e g a t i v e l y .  The f u l l - s p a n  
f l a p s  and f l a p e r o n s  were d i v i d e d  i n t o  s i x  e q u a l  spanwise segments t h a t  cou ld  
be d e f l e c t e d  i n d e p e n d e n t l y  o f  each o t h e r .  
t o  6 from l e f t  t o  r i g h t  wing t i p s .  D e f l e c t i o n  a n g l e  was v a r i e d  by means of 
f i x e d  a n g l e  p l a t e s .  The removable leading-edge s la ts  had a S t  Cyr 178 a i r -  
f o i l  s e c t i o n  o f  15- and 25-percent  wing chord.  The h o r i z o n t a l  t a i l  a l s o  had 
a 0.15-chord s l a t  and a f l a p  w i t h  a c o n s t a n t  chord t h a t  was 20 pe rcen t  of 
t h e  t a i l  mean aerodynamic chord .  A t r a n s i t i o n  s t r i p  o f  No. 60 carborundum 
g r a i n s  was a p p l i e d  t o  t h e  wing 3.2 cm behind t h e  l e a d i n g  edge.  

These segments were numbered 1 

Compressed a i r  f o r  blowing ove r  t h e  nose  o f  t h e  wing f l a p s  was brought  
through a tube  (3.17 c m  i n  d i a m e t e r )  i n  t h e  c e n t e r  o f  t h e  s t i n g  t o  a mani- 
f o l d  i n  t h e  f u s e l a g e .  A i r  from t h e  manifold was c a r r i e d  th rough  wing d u c t s  
(1.27 c m  s q u a r e )  t o  s i x  i n d i v i d u a l  plenums i n  t h e  rear o f  t h e  wing j u s t  
ahead o f  t h e  f l a p  nose.  A i r  from t h e s e  plenums flowed o v e r  t h e  upper  s u r -  
face of  t h e  f l a p  nose th rough  h o l e s  d r i l l e d  i n t o  t h e  plenums p a r a l l e l  t o  t h e  
wing chord p l a n e  and normal t o  t h e  f l a p  h i n g e  l i n e .  There were 500 e x i t  
h o l e s  f o r  each wing semispan;  t h e s e  e x i t  h o l e s  v a r i e d  i n  d i ame te r  from 
0.244 cm a t  t h e  f u s e l a g e  t o  0.051 c m  a t  t h e  wing t i p .  T h i s  r e d u c t i o n  i n  
h o l e  d i ame te r  was n e c e s s a r y  because o f  t a p e r  i n  wing t h i c k n e s s  and was use- 
f u l  i n  a t t a i n i n g  n e a r l y  c o n s t a n t  wing-sect ion momentum c o e f f i c i e n t .  The 
mass f low th rough  t h e  group o f  e x i t  h o l e s  f o r  any  f l a p  segment could be  con- 
t r o l l e d  by a v a l v e  i n - t h e  wing d u c t  n e a r  t h e  f u s e l a g e  manifold.  

The model was a t t a c h e d  t o  a six-component s t r a i n - g a g e  b a l a n c e  i n s i d e  
t h e  fuselage on t h e  end o f  t h e  mounting s t i n g  i n  t h e  Langley V/STOL t u n n e l .  
The a i r  s u p p l y  l i n e  coming th rough  t h e  s t i n g  w a s  a l s o  a t t a c h e d  t o  t h e  model 
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inside the fuselage. Tunnel variables and model forces, moments, and pres- 
sures were recorded on magnetic tape. 

TESTS AND CORRECTIONS 

Tests were made at a tunnel dynamic pressure of 814 N/m2 at a Reynolds 
number of 720 000 based on the wing mean aerodynamic chord of 28.99 cm. The 
angle-of-attack range varied from -4' to 2 4 O ,  and the blowing-momentum coef- 
ficient range varied from 0 to 2.3. Data were obtained with wing slats on 
and off, with wing slats of different chords and deflections, with various 
flap and flaperon deflections, with combinations of flap and flaperon 
deflections, with various horizontal-tail incidences, with tail off, and 
with tail flap on and off. Most flap deflections involved the full span, 
although there were some tests of partial-span deflections and partial-span 
blowing. 

With the flaps removed, the balance-measured static jet force 

/= was determined for a range of wing duct pressures. From this 

calibration and the tunnel dynamic pressure, the momentum coefficient C, 
was determined. The adjustable duct pressure for each flap segment in con- 
junction with the different jet hole sizes provided a rather uniform momen- 
tum coefficient for each spanwise wing element. The static jet force was 
essentially the axial force because the normal force was very small, and the 
side force was negligible since one wing panel nullified the side force of 
the other. It is well to note that the momentum coefficient determined from 
axial force on a swept-wing model is not a true indication of the quantity 
of blowing air, and comparisons between complete models on the basis of 
momentum coefficient may be misleading if the wing sweep angles are signifi- 
cantly different. The momentum coefficients presented are about 5 percent 
less than those for a wing with zero sweep of the jet thrust line. 

Attachment of the air supply line to the model affects the sensitivity 
of the strain-gage balance, and variations in air-line pressure produce 
forces and moments on the balance. Calibrations were made to determine 
these nonaerodynamic effects, and corrections to the data were made. Wind- 
tunnel wall corrections to the data were made by the method of reference 6. 

RESULTS AND DISCUSSION 

The early exploratory part of this investigation (figs. 5 to 9) deter- 
mined the overall aerodynamic characteristics. Model longitudinal aerody- 
namic characteristics were obtained for several flap deflections and a few 
combinations of flap and flaperon deflections to establish a useful flap 
deflection range for further testing. Several runs were made to determine 
the wing-slat chord and slat deflection most desirable for this wing and its 
range of flap deflections. Since attention was focused on developing the 
high lift characteristics of the wing, much of the data was obtained with 
the horizontal tail removed. 
that the 0.25-chord wing slat was more effective than the 0.15-chord slat; 

The early part of the investigation showed 
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therefore, the longer chord slat only was used in the latter part of the 
investigation (figs. 10 to 29). Some attention was also given to increasing 
the lift effectiveness of the horizontal tail since blown flaps are noted 
for large negative pitching moments. 

Wing-Slat Effects 

Figures 5 and 6 show the lift characteristics of the model with low 
flap deflections ( O o ,  15') without wing slats, and with high flap deflections 
with 0.15-chord wing slats. The 0.15-chord slats increase the stall angle 
of the wing with flaps deflected except for some flap deflections with no 
blowing, and the 50' slat deflection gives larger stall angles than the 
40' deflection except at low (30') flap deflections with no blowing. 

The effect of the slats is more clearly shown in figure 7 with the 
flaps deflected 30°, in figure 8(a) with the flaps deflected 45O, and in 
figure 10 with the flaps undeflected. The 0.15-chord slat is satisfactory 
for a flap deflection of 30' without blowing (fig. 7(a)); the 0.25-chord 
slat is more effective with higher flap deflections with blowing (figs. 7 
and 8 ) .  Figure 8 shows a direct comparison between the two slats and the 
improvement in lift characteristics of the wing with slats as compared with 
the wing without slats for flap deflections of 45' or  more. The angle of 
attack at which the wing stalled varied with flap deflection and blowing 
momentum coefficient. With no slats and flaps deflected, the stall angle 
varied from about 6' to 15'; with the 0.15-chord slats, the stall angle 
varied from about 12' to 20' (figs. 7 and 8). The wing seldom stalled with 
the 0.25-chord slats up to angles of attack of 20' to 23O, the maximum 
angles of attack investigated (figs. 7 and 8). 

With a flap deflection of 45O (fig. 8(a)), the 0.15-chord slats have 
little effect on the drag and pitching moment of the unstalled model with 
tail off, but the 0.25-chord slats reduce the nose-down pitching moments for 
all the higher (45' to 70') flap deflections with blowing (fig. 8). Also 
the drag of the model with the 0.25-chord slats is less than the drag of the 
model with the 0.15-chord slats. There is.a small difference in C, for 
the two slat configurations, but the difference in could produce only a 
small part of the drag difference shown. Elimination of the Cu difference 
would result in even larger differences in pitching moments than shown. 

C, 

Flap and Flaperon Characteristics 

The flap characteristics of the model through a range of flap deflec- 
tions are presented in figures 5 and 6 for the model with the 0.15-chord 
wing slats, and data for combined flap and flaperon deflections are pre- 
sented in figure 9. As noted earlier, the wing stalled at a lower angle of 
attack with the 0.15-chord slats than with the 0.25-chord slats, and the 
following discussion relates to the data obtained with the 0.25-chord slats 
on the wing. 

5 



The l i f t  c h a r a c t e r i s t i c s  o f  t h e  model w i t h  t h e  f l a p s  arid f l a p e r o n s  

Blowing w i t h  t h e  f l a p e r o n s  d e f l e c t e d  30' 
u n d e f l e c t e d  are shown i n  f i g u r e  I O ,  and t h e  effect  o f  d e f l e c t i n g  t h e  f l a p -  
e r o n s  o n l y  is shown i n  f i g u r e  11. 
i n c r e a s e s  t h e  maximum l i f t  c o e f f i c i e n t  from 2.0 t o  over  7.0 ( f i g s .  I l ( a )  
and l l ( c ) ) .  F l ape ron  d e f l e c t i o n s  o f  45Oshow some l i f t  improvement ove r  30° 
w i t h  low blowing momentums b u t  show a l i f t  l i t t l e  greater t h a n  t h a t  a t  0' 
d e f l e c t i o n  a t  h i g h  blowing momentums. Th i s  l i f t  breakdown a t  h i g h  blowing 
would i n d i c a t e  complete  s e p a r a t i o n  o v e r  t h e  f l a p e r o n .  The blowing e x i t s  are 
0.15 chord ahead o f  t h e  f l a p e r o n s ,  and t h i s  d i s t a n c e  allows t h e  j e t  t o  
i n c r e a s e  i n  t h i c k n e s s  b e f o r e  i t  gets t o  t h e  nose  o f  t h e  f l a p e r o n s .  T h i s  
i n c r e a s e  i n  t h i c k n e s s ,  t h e  h i g h  j e t  v e l o c i t y ,  and t h e  small f l a p e r o n  nose 
r a d i u s  cause t h e  s e p a r a t i o n .  

Data f o r  combined f l a p  and f l a p e r o n  d e f l e c t i o n s  are p r e s e n t e d  i n  f i g -  
u r e s  12 t o  16. The f l a p  and f l a p e r o n s  are similar i n  t h a t  each  i s  a p l a i n  
t r a i l i n g - e d g e  f l a p  when d e f l e c t e d  a l o n e .  The f l a p  and f l a p e r o n s  d i f f e r  i n  
chord l e n g t h ,  nose r a d i u s ,  and f l a p  nose  l o c a t i o n  w i t h  r e s p e c t  t o  t h e  j e t  
e x i t s .  Blowing wi th  t h e  f l a p  a l o n e  d e f l e c t e d  60' i n c r e a s e s  t h e  maximum l i f t  
c o e f f i c i e n t  from 2.1 ( f i g .  1 5 ( a ) )  t o  9 .6  ( f i g .  1 5 ( c ) ) .  A t  a d e f l e c t i o n  of 
TO0 ( f i g .  1 6 ) ,  t h e  f low i s  s t i l l  a t t a c h e d  t o  t h e  f l a p ;  on t h e  o t h e r  hand,  
t h e  f low o v e r  t h e  f l a p e r o n  was s e p a r a t e d  a t  a d e f l e c t i o n  o f  45'. 
on t h e  f l a p e r o n  r e s u l t s  i n  a r e d u c t i o n  o f  t h e  magnitude o f  t h e  n e g a t i v e  
p i t c h i n g  moments and u s u a l l y  r e s u l t s  i n  a n  i n c r e a s e  i n  d r a g  a t  e q u i v a l e n t  
l i f t  c o e f f i c i e n t s  ( f i g .  1 1 ) .  

S e p a r a t i o n  

Cross  p l o t s  of t h e  l i f t  d a t a  a g a i n s t  combined d e f l e c t i o n s  o f  t h e  f l a p  
and f l a p e r o n  t aken  from f i g u r e s  11 t o  16 are shown i n  f i g u r e  17. The d a t a  
i n d i c a t e  t h a t  d e f l e c t i o n s  o f  t h e  f l a p  a l o n e  ( 6 f 2  = 0') g i v e  l i f t  c o e f f i -  
c i e n t s  as h igh  o r  h i g h e r  t han  t h e  combined d e f l e c t i o n s  o f  t h e  f l a p  and f l a p -  
e r o n ,  excep t  a t  a f l a p  d e f l e c t i o n  of  60' combined w i t h  a f l a p e r o n  d e f l e c t i o n  
of 15'. 
t i v e n e s s  w i t h  blowing, e s p e c i a l l y  a t  t h e  h i g h e r  combined d e f l e c t i o n s  because 
of f low s e p a r a t i o n  on t h e  f l a p e r o n .  

Higher f l a p e r o n  d e f l e c t i o n s  cause  t h e  f l a p  system t o  l o s e  effec- 

P a r t i a l - S p a n  F l a p  D e f l e c t i o n s  

The l o n g i t u d i n a l  c h a r a c t e r i s t i c s  o f  t h e  model w i t h  p a r t i a l - s p a n  f l a p  
d e f l e c t i o n s  compared w i t h  f u l l - s p a n  d e f l e c t i o n s  are  shown i n  f i g u r e s  18 
t o  23. I n  a l l  cases, t h e  plenum p r e s s u r e s  were e s s e n t i a l l y  t h e  same f o r  
t h e  t h r e e  g roups  o f  f l a p  segments f o r  t h e  low and f o r  t h e  h i g h  blowing. I n  
o t h e r  words, t h e  p r e s s u r e  r a t i o s  a c r o s s  t h e  je t  e x i t s  d i d  n o t  v a r y  with t h e  
number o f  f l a p  segments d e f l e c t e d ,  b u t  t h e  t o t a l  mass f l o w  d i d ,  and t h e  
momentum c o e f f i c i e n t  v a r i e d  because i t  was based on t h e  t o t a l  wing area and 
n o t  on t h e  area b e i n g  blown. By v a r y i n g  t h e  number and diameter o f  t h e  e x i t  
h o l e s ,  an a t t e m p t  was made t o  make t h e  t o t a l  e x i t - h o l e  area o f  any wing seg- 
ment p r o p o r t i o n a l  t o  t h e  blown (exposed)  area o f  t h e  segment.  For such  con- 
d i t i o n s ,  t h e  mass f low ra tes  and momentum c o e f f i c i e n t s  would a l s o  be approx- 
i m a t e l y  p r o p o r t i o n a l  t o  t h e  blown areas f o r  e q u a l  f l a p  plenum p r e s s u r e s ,  and 
c o n s t a n t  C, f o r  spanwise wing e l emen t s  would be a t t a i n e d .  

i 
z 
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Figure 22 also shows the effect of deflecting the midspan flap seg- 
ments without blowing and with blowing on the deflected inboard segments. 
This combination in comparison with the results of the blown inboard seg- 
ments alone reduces the angle of attack and, consequently, the drag for a 
given lift coefficient. Deflecting the inboard and midspan flaps unequally 
(fig. 23) gives little more benefit than deflecting them equally (fig. 20). 
Deflections of 45',45' as opposed to unequal deflections of 3Oo,6O0 show 
less drag at equivalent lift coefficients but larger negative pitching 
moments. 

Cross plots of the lift data against flap deflection taken from fig- 
ures 11 to 16 and 18 to 22 are presented in figure 24 for the three spanwise 
segments of the wing at zero angle of attack. The lift coefficients are for 
equal momentum coefficients and approximately equal total.mass flows. The 
lift coefficients show the advantage of distributing a given mass flow over 
the entire wing area rather than over a part of the wing. 

The lift variation with flap span is shown in figure 25 for four flap 
deflections for a range of momentum coefficients at a model angle of attack 
of zero. This figure was obtained by cross-plotting the lift (figs. 18 
to 22) against momentum coefficient for the three flap spans and then by 
cross-plotting the lift for each span against the ratio of flap span to 
exposed wing span at constant momentum coefficients. 

Horizontal-Tail Characteristics 

Figures 26 to 29 show the effects of the horizontal tail on the aero- 
dynamic characteristics of the model with various wing-flap deflections and 
wing blowing momentums. The negative moments produced by the wing flaps 
required a download on the tail to balance the model, which resulted in a 
considerable reduction in model lift for some conditions. The tail with 
leading-edge slats and a flap which increased the tail area was more than 
adequate to trim the model for all conditions except when the tail stalled. 
Large wing-flap deflections and high blowing momentums produce large down- 
wash angles which, combined with a tail incidence of - 1 5 O ,  result in a 
stalled tail at low model angles of attack for some conditions (fig. 28). 
Otherwise, the tail-on model is stable in attitude until the wing stalls. 

SUMMARY OF RESULTS 

A wind-tunnel investigation was made to determine the longitudinal 
aerodynamic characteristics of a model of an internally blown jet-flap STOL 
airplane. Jet momentum coefficients as high as 2.3 were obtained with com- 
pressed air. The supercritical swept wing had leading-edge slats and a 
full-span 0.30-chord plain flap divided into six equal spanwise segments. 
The flaps had 0.15-chord trailing-edge flaperons which were deflected with 
respect to the flap. Data were obtained through an angle-of-attack range 
for various flap deflections and momentum coefficients. 
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Some of the results follow: 

1. The leading-edge wing slats improved the lift characteristics of the 
wing by delaying wing stall to much higher angles of attack and higher lift 
coefficients. The 0.25-chord slat was more effective than the 0.15-chord 
slat at the higher flap deflections. 

2. The shorter-chord flaperon suffered flow separation at much lower 
deflections and produced much lower maximum lift than did the longer chord 
flaps. 

3. For a given momentum coefficient, higher lift coefficients are 
obtained by blowing over the entire wing than by blowing over partial spans, 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
September 23, 1976 
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Wing: 

Airfoil section,'l7% thick supercriticol 
Area, m' 0.483 
Mean aerodynamic chord, cm 28.99 
Aspect ratio 7.48 

Horizontal tail: 

Airfoil section, 11 % thick supercritical 
Area, m' 0.1 56 
Mean aerodynamic chord, cm 21.31 
Aspect ratio 4.05 

Vertical tail: 

Airfoil section, 11 % thick supercriticol 
Area, m' 0.138 
Mean aerodynamic chord, cm 29.38 

Figure 1.- Three-view drawing of model. A l l  dimensions are in centimeters. 
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Figure  2.- Ske tch  o f  wing and h o r i z o n t a l - t a i l  s e c t i o n s  showing f l a p  and s l a t  de ta i l s .  
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F i g u r e  3 . -  Wing ordinates. 
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L-72-2162 - 
(a) Three-quarter front view. 

Figure 4.- Photographs of model. 



Figure 4.- Concluded. 
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Figure 5.- Effect of flap deflection on longitudinal characteristics 
of model. Tail off; 6f2 = O o ;  slat chord, 0.15~. 
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